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Abstract

This doctoral thesis presents research work that elucidates the major phase transformations
in supermartensitic stainless steels and their impact on the mechanical properties.
Supermartensitic stainless steels are martensitic steels with particularly low C and N
content and are based on the Fe-Cr-Ni system. This class of steels is weldable, strong, tough
and shows good resistance to wet-corrosion. Thus, it is of special interest for off-shore
applications in the oil and gas industry.

Supermartensitic stainless steels solidify as d-ferrite, transform largely to austenite
during cooling above A3 and transform almost entirely to martensite during cooling to
room temperature. In this condition, the material is hard and brittle. The above listed
properties are obtained by annealing the material in the inter-critical temperature region (in
between A; and A3), by which the material is softened as a result of tempering of martensite
and partial reversion of austenite at grain boundaries. Just above A; reverted austenite
forms enriched in Ni in an attempt to fulfill thermodynamic equilibrium. Partitioning of Ni
stabilizes reverted austenite against martensite transformation during cooling to room
temperature.

In the present work, the most relevant phase transformations were analyzed and are
presented in the order of their occurrence during materials processing. A first study
investigated the kinetics of the 6-ferrite-to-austenite transformation during solidification
and cooling with the aim of predicting the amount of retained &-ferrite at room temperature.
Another study concerned the in-situ measurement of the evolution of lattice strains and
stresses in austenite and martensite during martensite formation. Subsequently, tempering
of martensite was studied by analyzing the redistribution of interstitial elements, C and N,
relaxation of phase-specific stresses and recovery of the martensite substructure.

The role of Ni-diffusion in austenite reversion from lath martensite was clarified by
conducting kinetics analysis of austenitization during isochronal heating. Two distinct
stages of transformation were observed experimentally and predicted by kinetics modeling
and were found to be governed by redistribution of Ni. Microstructure characterization of
inter-critically annealed samples revealed austenite formation as thin films on lath
boundaries and other grain boundaries. Analysis of compositional measurements indicated
that reverted austenite is mainly stabilized by a redistribution of Ni. The stable fraction of
reverted austenite at room-temperature was not noticeably affected by immersion in boiling
N2, but progressively reduced during holding at 194.5 K. Strain-induced martensite
formation from reverted austenite during tensile testing of differently annealed conditions
was studied in-situ with in-situ synchrotron X-ray diffraction. The experiments yielded data
on stress-partitioning, evolution of the substructure, and anisotropy of lattice strains of
austenite and martensite, which could be associated to the macroscopic stress.
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Finally, the presented research contains a study on the recently developed materials
characterization method transmission Kikuchi diffraction in on-axis configuration.



Resumé

Denne athandling preesenterer forskning, som belyser de vasentligste faseomdannelser 1
supermartensitisk rustfrit stdl og deres betydning for de mekaniske egenskaber.
Supermartensitisk rustfrit stal er martensitiske stil med sarligt lavt indhold af C og N og
de er baseret pd Fe-Cr-Ni systemet. Denne klasse af stil har god svejsbarhed, hej styrke og
sejhed og udviser god korrosionsbestandighed. Derfor er materialet sarligt interessant for
olie- og gasindustrien.

Supermartensitisk rustfrit stil starkner som &-ferrit, som under videre afkeling stort
set omdannes til austenit over A; temperaturen. Austenitten transformeres nasten
fuldsteendigt til listemartensit under afkeling til stuetemperatur. I denne tilstand er
materialet hardt og spredt. De endelige mekaniske egenskaber opnés ved varmbehandling
i det inter-kritiske temperatur interval (mellem A; og A3), og det gor materialet bladere,
ved anlebning af martensitten og ved dannelse af en begraenset mangde af reverseret
austenit pd korngranser. Austenitten dannes lige over A; med et foreget indhold af Ni for
at opfylde termodynamisk ligevaegt. Det foregede Ni indhold stabiliserer den reverserede
austenit mod martensit dannelse ved afkeling til stuetemperatur.

I dette arbejde er de mest relevante faseomdannelser blevet analyseret og de
preesenteres 1 den reekkefolge, som forekommer ved materialets behandlings proces. Forst
blev kinetikken af 6-ferrit-til-austenit omdannelsen under storkning og afkeling analyseret
for at forudsige o-ferrit indholdet ved stuetemperatur. En anden undersggelse omhandlede
in-situ malinger af tejnings- og spandings-forlebet i1 austenit og martensit under
martensittransformationen. Derefter blev anlebningen af martensit undersogt ved at
analysere omfordelingen af de interstitielle elementer, C og N, relaksation af fase-
specifikke spendinger og @ndringer i den martensitiske substruktur.

Betydningen af Ni-diffusion for dannelsen af reverseret austenit ud fra
listemartensit blev klarlagt ved at udfere kinetisk analyse af austenitdannelse under
kontinuerlig opvarmning. To distinkte transformations trin blev observeret eksperimentelt
og forudsagt ved kinetisk modellering. Det blev fundet, at den trinvise omdannelse styres
af omfordelingen af Ni. Karakterisering af mikrostrukturen af inter-kritisk
varmebehandlede emner viste, at reverseret austenit dannes i form af tynde film pd
martensitliste grenser og pd andre korngrenser. Analyser af lokale kemiske
sammens@tninger viste, at reverseret austenit hovedsageligt stabiliseres af
opkoncentreringen af Ni. Den stabile faseandel af reverseret austenit ved stuetemperatur
blev ikke pavirket af nedsenkning i kogende nitrogen, men reduceredes med tid ved en
konstant temperatur pad 194.5 K. Tejnings-induceret omdannelse af reverseret austenit til
martensit under treekprovning af forskellige varmebehandlede emner blev milt in-situ med
synkrotron rentgendiffraktion. Forsgget frembragte data om fordeling af indre spaendinger
pa austenit og martensit, udvikling af substrukturen og anisotropi af gittertejninger i
austenit og martensit, som kunne henfores til den makroskopiske spanding.
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Det praesenterede forskningsarbejde indeholder desuden en undersegelse af Transmission
Kikuchi Diffraction (TKD) i on-axis konfiguration, som er en nyligt udviklet metode til
materialekarakterisering.
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List of abbreviations and symbols

This list does not contain chemical element symbols, SI-units, product/company names and

metric prefixes. Designations may differ locally in the individual result chapters.

Units
A
at.%

HV
Hz
Pa
ppm
vol.%
wt.%

y

Angstrom
Atomic percent

Vickers hardness

Hertz

Pascal

Parts per million

Volume percent

Weight percent

Interstitial atoms per 100 metal atoms

Physical constants

C

e
h
R

Speed of light in vacuum
Elementary charge
Planck’s constant
Universal gas constant

Variable parameters

X1V

Shape factor (XRD)

Lower equilibrium phase-transition temperature of a-ferrite and austenite
Upper equilibrium phase-transition temperature of a-ferrite and austenite
Lower equilibrium phase-transition temperature of austenite and &-ferrite
Elastic anisotropy parameter

Elongation until rupture

Start temperature of ferrite-to-austenite transformation during heating
Finish temperature of ferrite-to-austenite transformation during heating
Structure factor (XRD)

Fourth order ratio (XRD)

Charpy-V impact toughness

Martensite finish temperature

Martensite start temperature

Outer dislocation cut-off radius (XRD)

Ultimate tensile strength

Proof strength / Yield strength

Curie Temperature

Inner dislocation cut-off radius (XRD)
X-ray elastic constants

Fraction of vacant lattice sites (Kinetics modeling)



3r

FWHM
h k1

X, Y, Z

[
Q@ 3333 @A Aaao SN TOTEEE AR Y —m—_ O mTAaXr X

Average magnetic moment per atom (Thermodynamics modeling)
Orientation parameter (XRD)

Coherently diffracting particle size
Full width at half maximum

Miller indices of cubic crystal planes
Natural number

3-dimensional spatial coordinates
Broadening of the diffraction vector
Area

Dislocation contrast factor (XRD)
Diffusion coefficient

Energy

Force
Gibb’s energy

Experimental intensity (XRD)

Binary interaction parameter (Thermodynamics modeling)
Diffusion flux

Length of diffraction vector (XRD)

Interaction parameter (Thermodynamics modeling)
Dislocation distribution parameter (XRD)
Magnetic moment (VSM)

Diffusion mobility (Kinetics modeling)
Pressure

Activation enthalpy

Theoretical intensity (XRD)

Temperature

Voltage

Volume

Lattice constant

Burgers vector (Crystallography)

Crystal elastic constants (XRD)

Concentration (Kinetics modeling)

Planar spacing (Crystallography)

Distance

Phase fraction

Diffraction vector (XRD)

Length
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Background

1 Background

1.1 Stainless steel

Stainless steels are ferrous alloys with at least 10.5 wt.% of Cr content. Cr forms a thin Cr-
oxide/hydroxide -rich surface layer, which acts as an insulating barrier between the metal
and a corrosive environment, giving stainless steels a high corrosion resistance. [1]

1.2 Martensitic steel

Martensitic steels are steels that predominantly consist of the martensite phase, which is
conventionally formed by a diffusionless transformation with a body-centred tetragonal
crystal structure during rapid cooling from the austenite phase field. Martensite formation
is associated with a change in volume and a shear strain and leads to hardening of the steel.
The transformation to martensite can only occur when austenite is metastable. [2]

1.3 Supermartensitic stainless steel

Supermartensitic stainless steel is a stainless steel with predominantly martensitic
microstructure and extremely low content of the interstitial elements C and N, which
restricts tetragonal distortion of the martensite unit cell and leads to a reduction in hardness.
In order to obtain a transformable alloy, Ni is used to stabilize austenite. Supermartensitic
stainless steels are, based on their property combination of high strength, high impact
toughness, useful corrosion resistance and good weldability, popular in off-shore oil and
gas applications. In cases where the corrosion resistance of carbon steel is not sufficient
and the corrosion resistance of a Duplex stainless steel is overspecified, supermartensitic
stainless steels offer an economically attractive alternative. [3]

Annealing of supermartensitic stainless steel in the inter-critical temperature region,
i.e. the region in which both austenite and ferrite are thermodynamically stable, leads to
formation of finely dispersed austenite. Austenite formation is accompanied by diffusion,
which induces partitioning of Ni in martensite and austenite. The increased Ni content in
austenite stabilizes austenite against martensite formation during cooling. The annealing
treatment thus leads to an attractive dual-phase microstructure of tempered martensite and
so called “reverted austenite”. Reverted austenite has significant impact on the mechanical
properties: It reduces the ultimate tensile strength, yield strength and hardness, and
increases impact toughness and ductility. [3]

1.4 Scope and aim

The aim of the present research project is to elucidate the major phase transformations in
supermartensitic stainless steel and closely related alloys. The main focus in this work will
be on the martensite-to-austenite transformation, as it has the most significant effect on the
alloy properties. This particular phase transformation is affected by preceding phase
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transformations, such as retainment of &-ferrite from solidification and cooling, martensite
formation after solution treatment and tempering of martensite when heating towards the
inter-critical annealing temperature. As the most important property of reverted austenite
is its stability against martensite formation, the austenite-to-martensite transformation is
regarded as the second most important phase transformation in this work. The thermal and
mechanical stability of reverted austenite against martensite formation is thus investigated
as well. Finally, the relation between different microstructures and mechanical properties
are established. The success criterion of this doctoral thesis is to obtain a holistic
understanding of the processing-microstructure and microstructure-property relations in
supermartensitic stainless steels. As this aim requires the employment of a multitude of
methods, a secondary aim of this work is the development and qualification of advanced
experimental methods.

1.5 Scientific approach

In order to obtain a holistic understanding of phase transformations and related properties
in supermartensitic stainless steels, correlation of results from several methods is required.
The aim of this work, to obtain a deeper understanding of the governing phase
transformations, is primarily approached by conducting advanced in-situ experimental
studies, and relating them to results from materials characterization and numerical
modeling. In-situ studies allow direct observation of phase transformations as a function of
several potential processing parameters, such as time, temperature or load. They are
indispensable for obtaining a direct understanding of phase transformations and their
kinetics. The applied in-situ methods detect the average response of bulk material to a
change in temperature or stress. In order to elucidate the precise mechanism occurring on
the micro- and nano-scale, advanced materials characterization was applied. Numerical
modeling allowed validation of experimental findings and enables predicting
transformations for materials design. It further enables the analysis of experimentally
inaccessible mechanisms, isolation or disabling of sub-mechanisms and analysis of
mechanisms that are either unfeasible or impossible to proof experimentally. Numerical
modeling thus served as a well-suited complementary method to the in-situ experiments.

1.6 Terminology

Since there is no consistent terminology in literature, austenite that forms during inter-
critical annealing of lath martensite is interchangeably referred to as “reverted” and
“reversed” austenite. In some of the manuscript-based result chapters, soft martensitic
stainless steel alloys are referred to as “supermartensitic stainless steel”. The correct
assignment of the investigated alloys to these alloy classes is given in chapter 3. As the
transformation behavior and the investigated properties of the closely related alloy classes
are almost identical, the reported findings are not affected by the use of different
designations.
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1.7 Outline

Figure 1.1 shows a flowchart of the structure of the present doctoral thesis. This thesis is
manuscript-based, meaning that the results of this work are subdivided in individual
manuscripts (chapters 6 to 14). These result chapters are presented in the order of the

1 Background
v
2 Introduction
k2
3 Materials and experimental methods
k2
4 Modeling methods
v
5 Summary of results

Results |

(i) Kinetics of solidification and cooling

(iv) Austenite reversion

6 Manuscript I: Kinetics modeling of delta-ferrite
formation and retainment during casting of
supermartensitic stainless steel

10 Manuscript V: Kinetics analysis of two-stage
austenitization in supermartensitic stainless steel

(ii) Martensite formation

11 Manuscript VI: Formation and stabilization of
reversed austenite in supermartensitic stainless
steel

(v) Stability of reverted austenite

7 Manuscript II: In Situ Investigation of the
Evolution of Lattice Strain and Stresses in
Austenite and Martensite During Quenching and
Tempering of Steel

12 Manuscript VII: Martensite formation from
reverted austenite at sub-zero Celsius temperature

(iii) Tempering of martensite

13 Manuscript VIII: Mechanical stability of
reverted austenite in supermartensitic stainless
steel — an in-situ synchrotron X-ray diffraction
study

(vi) Experimental methods

8 Manuscript III: In-situ analysis of
redistribution of carbon and nitrogen during
tempering of low interstitial martensitic stainless
steel

14 Manuscript IX: A systematic comparison of
on-axis and off-axis transmission Kikuchi
diffraction

9 Manuscript IV: Structural evolution of
martensite during tempering of soft martensitic
stainless steel

15 Conclusion

16 Further work

17 Appendix

Figure 1.1: Flowchart on the structure of the chapters of the doctoral thesis.
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processing steps of supermartensitic stainless steels (i-iv), the material properties (v) and
the investigated experimental methods (vi). A summary of the results is given in chapter 5,
which is preceeded by an introduction (chapter 2) and the experimental and modeling
methods (chapters 3 and 4). The conclusion, remarks on further work and the appendix
(chapters 15 to 17) complete the thesis.
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2 Introduction

The introductory chapter cove